Logo Akademii Kopernikańskiej
Menu

Check out the latest announcements and news

General Assembly of the Copernicus Academy

Aug 07, 2023

Cooperation between the Copernican Academy and the Silesian Planetarium. Agreement signed

Aug 04, 2023

Announcement about the competition for financing the Nicolaus Copernicus Grants

Jul 21, 2023

New partners for the Copernicus Academy. An agreement has been signed with Jan Kochanowski University in Kielce and the “Starachowice” SEZ

Jul 20, 2023

Copernican Scholarships and Nicolaus Copernicus Grants. Regulations adopted

Jul 10, 2023

Winners of the Copernicus Awards toured Warsaw

Jun 26, 2023

Copernican Talks. Rzymkowski: Laureates of the Copernican Awards are great friends of Poland

Jun 26, 2023

Copernican Awards – the achievements of outstanding researchers recognised. See the spot!

Jun 23, 2023

Copernicus Academy Ambassadors elected

Jun 23, 2023
1 … 9 10 11 12 13 … 16
Cudzysłów
Kopernikańskie twierdzenia cosinusów dla trójkątów sferycznych

Rozdział XIV

Twierdzenia III i XII

Cudzysłów
Rozważamy trzy punkty A, B, i C na sferze o promieniu R. Jeżeli połączymy je łukami (wzdłuż kół wielkich) to otrzymamy trójkąt sferyczny ABC.
Rozważamy trójkąty, które są prostokątne i mają boki krótsze niż półokrąg, jak na rysunku.
Cudzysłów
III Twierdzenie Kopernika:

W prostokątnym trójkącie sferycznym ABC na sferze o promieniu R (gdzie kąt C jest prosty) zachodzą następujące proporcje pomiędzy długościami boków:

AB / BC = R / BC

Czyli że stosunek przeciwprostokątnej do jednej z przyprostokątnych jest równy stosunkowi promienia do drugiej przyprostokątnej. Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów
Czyli Kopernik dowiódł szczególną wersję twierdzenia cosinusów dla trójkątów sferycznych.  Teraz możemy  założyć że promień sfery R =1.

Mierzymy w radianach długość boku (łuku) leżącego naprzeciwko danego kąta jako łuku na sferze (od środka sfery) i mamy:

AB = c         BC = a         AC = b
(tutaj a, b, c są miarami kątów AOB, BOC, AOC w radianach)

Jeżeli kąt C jest prosty, możemy zapisać twierdzenie Kopernika jako

cos c / cos b = cos a

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów
Twierdzenia Pitagorasa dla trójkątów sferycznych

Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.  To jest sferyczna wersja twierdzenia Pitagorasa, które możemy zapisać jako:

cos c = cos b   cos a

Cudzysłów
Mamy też ogólniejsze twierdzenie cosinusów dla trójkątów sferycznych na sferze o promieniu R =1, gdzie kąty α, β, γ są kątami sferycznymi trójkąta ABC.

XII Twierdzenie Kopernika:
cos c = cos a   cos b + sin a   sin b   cos γ

Znaczy to, że jeżeli znamy dwa boki i przynajmniej jeden kąt, to możemy znaleźć trzeci, co jest sferyczną wersją twierdzenia cosinusów dla wszystkich trójkątów płaskich.

 

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Akademia Kopernikanska
Do góry

Polityka prywatności
Polityka Cookies
Konkursy
Deklaracja Dostępności

Kontakt
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350

Kontakt dla mediów
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • Follow
  • Follow
  • Follow
  • Follow
  • Follow
This site uses cookies to provide services at the highest level. By continuing to use the website, you agree to their use in accordance with the privacy policy.