Logo Akademii Kopernikańskiej
Menu
Jubilee of the heart of Polish Observational Astronomy:Celebrating 200 Years of the Astronomical Observatory of the University of Warsaw”

Jubilee of the heart of Polish Observational Astronomy:Celebrating 200 Years of the Astronomical Observatory of the University of Warsaw”

by admin | Sep 5, 2025 | Bez kategorii

This year, the Astronomical Observatory of the University of Warsaw celebrates its 200th anniversary. The history of this distinguished institution dates back to 1816, when the Department of Astronomy was founded. Thanks to the efforts of Franciszek Armiński, the...

Recent Posts

  • Jubilee of the heart of Polish Observational Astronomy:Celebrating 200 Years of the Astronomical Observatory of the University of Warsaw”
  • Exhibition “Nicolaus Copernicus. Pilgrimage to the Stars”
  • Message from the Acting Rector of the Nicolaus Copernicus Superior School
  • Strengthening cooperation between the Nicolaus Copernicus Academy and Radio Niepokalanów
  • Riga Technical University – 13.02.2025

Recent Comments

No comments to show.
Cudzysłów

Kopernikańskie twierdzenia cosinusów dla trójkątów sferycznych

Rozdział XIV

Twierdzenia III i XII

Cudzysłów

Rozważamy trzy punkty A, B, i C na sferze o promieniu R. Jeżeli połączymy je łukami (wzdłuż kół wielkich) to otrzymamy trójkąt sferyczny ABC.
Rozważamy trójkąty, które są prostokątne i mają boki krótsze niż półokrąg, jak na rysunku.

Cudzysłów

III Twierdzenie Kopernika:

W prostokątnym trójkącie sferycznym ABC na sferze o promieniu R (gdzie kąt C jest prosty) zachodzą następujące proporcje pomiędzy długościami boków:

AB / BC = R / BC

Czyli że stosunek przeciwprostokątnej do jednej z przyprostokątnych jest równy stosunkowi promienia do drugiej przyprostokątnej. Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów

Czyli Kopernik dowiódł szczególną wersję twierdzenia cosinusów dla trójkątów sferycznych.  Teraz możemy  założyć że promień sfery R =1.

Mierzymy w radianach długość boku (łuku) leżącego naprzeciwko danego kąta jako łuku na sferze (od środka sfery) i mamy:

AB = c         BC = a         AC = b
(tutaj a, b, c są miarami kątów AOB, BOC, AOC w radianach)

Jeżeli kąt C jest prosty, możemy zapisać twierdzenie Kopernika jako

cos c / cos b = cos a

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów

Twierdzenia Pitagorasa dla trójkątów sferycznych

Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.  To jest sferyczna wersja twierdzenia Pitagorasa, które możemy zapisać jako:

cos c = cos b   cos a

Cudzysłów

Mamy też ogólniejsze twierdzenie cosinusów dla trójkątów sferycznych na sferze o promieniu R =1, gdzie kąty α, β, γ są kątami sferycznymi trójkąta ABC.

XII Twierdzenie Kopernika:
cos c = cos a   cos b + sin a   sin b   cos γ

Znaczy to, że jeżeli znamy dwa boki i przynajmniej jeden kąt, to możemy znaleźć trzeci, co jest sferyczną wersją twierdzenia cosinusów dla wszystkich trójkątów płaskich.

 

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Akademia Kopernikanska
Do góry

Polityka prywatności
Polityka Cookies
Konkursy
Deklaracja Dostępności

Kontakt
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350

Kontakt dla mediów
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • Follow
  • Follow
  • Follow
  • Follow
  • Follow
This site uses cookies to provide services at the highest level. By continuing to use the website, you agree to their use in accordance with the privacy policy.