Logo Akademii Kopernikańskiej
Menu

Zaślepka – 中文 (中国)

Recent Posts

  • 世界哥白尼大会
  • Registration for the meeting is available. See the preliminary program of the second and third day of the World Copernican Congress.
  • 教育科学部长 Przemysław Czarnek 任命全权代表负责组织哥白尼学院。
  • 哥白尼学院办公室成立
  • 世界哥白尼大会组织小组成立。

Recent Comments

您尚未收到任何评论。
Cudzysłów
Copernican Cosine Theorems for Spherical Triangles

Chapter XIV

Theorems III and XII

Cudzysłów
We consider three points A, B, and C on a sphere of radius R. If we connect them by arcs (along great circles), we obtain a spherical triangleABC.
We consider right-angled spherical triangles with sides shorter than a semicircle, as shown in the
figure.
Cudzysłów

III Copernicus’ /b>Third Theorem<:

In a right-angled spherical triangle ABC on a sphere of radius R (where angle C is a right angle), the following proportion between the sides holds:

AB / BC = R / BC

That is, the ratio of the hypotenuse to one leg equals the ratio of the radius to the adjacent leg.
This means that if we know two sides, we can determine the third.

[Copernicus, Nicolaus (1473-1543), “De revolutionibus orbium coelestium”,  Kujawsko-Pomorska Digital library, UMK, 1854, Chapter XIII, pp. 63-64]

Cudzysłów
In other words, Copernicus proved a special case of the spherical law of cosines.  Now, we may assume that the sphere has radius R =1.

We measure in radians the length of the side (arc) opposite to a given angle as an arc on the sphere (from the sphere’s center).
We have:

AB = c         BC = a         AC = b
(here a, b, c are the measures of angles AOB, BOC, AOC in radians)

If angle C is right, we can write Copernicus’ theorem as:

cos c / cos b = cos a

[Copernicus, Nicolaus (1473-1543), “De revolutionibus orbium coelestium”,  Kujawsko-Pomorska Digital library, UMK, 1854, Chapter XIII, pp. 63-64]

Cudzysłów
Theorem of Pythagoras for spherical triangles

That is, if we know two sides, we can find the third.This is the spherical version of the Pythagorean theorem, which can be written as:

cos c = cos b   cos a

Cudzysłów
We also have the general spherical law of cosines for triangles on a sphere of radius R=1, where α, β, γ are the spherical angles of triangle ABC.

Copernicus’ Twelfth Theorem:
cos c = cos a   cos b + sin a   sin b   cos γ

That is, if we know two sides and at least one angle, we can determine the third, which is the spherical version of the law of cosines for all plane triangles.

 

[Copernicus, Nicolaus (1473-1543), “De revolutionibus orbium coelestium”,  Kujawsko-Pomorska Digital library, UMK, 1854, Chapter XIII, pp. 63-64]

Akademia Kopernikanska
Do góry

Polityka prywatności
Polityka Cookies
Konkursy
Deklaracja Dostępności

Kontakt
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350

Kontakt dla mediów
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • 关注
  • 关注
  • 关注
  • 关注
  • 关注
本網站使用 cookie 來提供最高級別的服務。 繼續使用該網站,即表示您同意根據隱私政策使用它們。