Logo Akademii Kopernikańskiej
Menu
Assegnazione del Grant Nicolaus Copernicus all’Università Jan Kochanowski di Kielce

Assegnazione del Grant Nicolaus Copernicus all’Università Jan Kochanowski di Kielce

da admin | Feb 22, 2024 | Attualita

Il 20 febbraio 2024 è stato stipulato un accordo con l’Università Jan Kochanowski riguardante l’assegnazione del Grant Nicolaus Copernicus per il progetto “Trasformazione digitale delle imprese: condizioni per l’applicazione...
Assegnazione del Grant Nicolaus Copernicus all’Università Jan Kochanowski di Kielce

Grant Nicolaus Copernicus per il Centro Astronomico Nicolaus Copernicus dell’Accademia Polacca delle Scienze nell’ambito del progetto “Proprietà fondamentali dei buchi neri binari accrescenti”

da admin | Feb 19, 2024 | Attualita

Il 14 febbraio 2024 è stato stipulato un accordo tra l’Accademia Copernicana e il Centro Astronomico Nicolaus Copernicus dell’Accademia Polacca delle Scienze riguardante l’assegnazione del Grant Nicolaus Copernicus alle condizioni stabilite...
Incontro della dirigenza dell’Accademia Copernicana con l’ambasciatore della Repubblica di Polonia in Grecia

Incontro della dirigenza dell’Accademia Copernicana con l’ambasciatore della Repubblica di Polonia in Grecia

da admin | Feb 19, 2024 | Attualita

Il 31 gennaio 2024, la dirigenza dell’Accademia Copernicana, rappresentata dal prof. Krzysztof M. Górski, Segretario Generale, e dal prof. Witold Mazurek, Direttore dell’Ufficio, ha incontrato Artur Lampart, Ambasciatore Straordinario e Plenipotenziario...
Incontro dei rappresentanti dell’Accademia Copernicana con le autorità di Kavala

Incontro dei rappresentanti dell’Accademia Copernicana con le autorità di Kavala

da admin | Feb 19, 2024 | Attualita

Il 1 febbraio 2024, presso il municipio di Kavala, i rappresentanti dell’Accademia Copernicana hanno incontrato le autorità della città. L’Accademia era rappresentata dal prof. Krzysztof M. Górski, Segretario Generale, dal prof. Witold Mazurek, Direttore...
Firma dell’accordo di collaborazione tra l’Accademia Copernicana e la Camera di Commercio e Industria Polacco-Greca

Firma dell’accordo di collaborazione tra l’Accademia Copernicana e la Camera di Commercio e Industria Polacco-Greca

da admin | Feb 9, 2024 | Attualita

Il 30 gennaio 2024, presso la sede della Camera Professionale di Salonicco, è stata avviata una collaborazione per lo sviluppo della scienza e il trasferimento di conoscenze tra l’Accademia Copernicana e la Camera di Commercio e Industria Polacco-Greca. La prima...
« Post precedenti
Post successivi »

Recent Posts

  • L’Accademia Copernicana amplia il partenariato – Università di Barcellona
  • L’Università del Montenegro e l’Accademia Copernicana partner scientifici nei settori copernicani
  • Conferenza scientifica internazionale “Esiste una natura umana?” presso l’Istituto Tomistico dell’Università Pontificia San Tommaso d’Aquino – Angelicum a Roma
  • Incontro dei rappresentanti dell’Accademia Copernicana con Don Mauro Mantovani, S.D.B., Prefetto della Biblioteca Vaticana
  • Incontro dei rappresentanti dell’Accademia Copernicana con le autorità dell’Università Pontificia della Santa Croce a Roma

Recent Comments

Nessun commento da mostrare.
Cudzysłów
Kopernikańskie twierdzenia cosinusów dla trójkątów sferycznych

Rozdział XIV

Twierdzenia III i XII

Cudzysłów
Rozważamy trzy punkty A, B, i C na sferze o promieniu R. Jeżeli połączymy je łukami (wzdłuż kół wielkich) to otrzymamy trójkąt sferyczny ABC.
Rozważamy trójkąty, które są prostokątne i mają boki krótsze niż półokrąg, jak na rysunku.
Cudzysłów
III Twierdzenie Kopernika:

W prostokątnym trójkącie sferycznym ABC na sferze o promieniu R (gdzie kąt C jest prosty) zachodzą następujące proporcje pomiędzy długościami boków:

AB / BC = R / BC

Czyli że stosunek przeciwprostokątnej do jednej z przyprostokątnych jest równy stosunkowi promienia do drugiej przyprostokątnej. Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów
Czyli Kopernik dowiódł szczególną wersję twierdzenia cosinusów dla trójkątów sferycznych.  Teraz możemy  założyć że promień sfery R =1.

Mierzymy w radianach długość boku (łuku) leżącego naprzeciwko danego kąta jako łuku na sferze (od środka sfery) i mamy:

AB = c         BC = a         AC = b
(tutaj a, b, c są miarami kątów AOB, BOC, AOC w radianach)

Jeżeli kąt C jest prosty, możemy zapisać twierdzenie Kopernika jako

cos c / cos b = cos a

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów
Twierdzenia Pitagorasa dla trójkątów sferycznych

Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.  To jest sferyczna wersja twierdzenia Pitagorasa, które możemy zapisać jako:

cos c = cos b   cos a

Cudzysłów
Mamy też ogólniejsze twierdzenie cosinusów dla trójkątów sferycznych na sferze o promieniu R =1, gdzie kąty α, β, γ są kątami sferycznymi trójkąta ABC.

XII Twierdzenie Kopernika:
cos c = cos a   cos b + sin a   sin b   cos γ

Znaczy to, że jeżeli znamy dwa boki i przynajmniej jeden kąt, to możemy znaleźć trzeci, co jest sferyczną wersją twierdzenia cosinusów dla wszystkich trójkątów płaskich.

 

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Akademia Kopernikanska
Do góry
Polityka prywatności
Polityka Cookies
Konkursy
Deklaracja Dostępności
Kontakt
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350
Kontakt dla mediów
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • Segui
  • Segui
  • Segui
  • Segui
  • Segui
Cudzysłów
Copernican Cosine Theorems for Spherical Triangles

Chapter XIV

Theorems III and XII

Cudzysłów
We consider three points A, B, and C on a sphere of radius R. If we connect them by arcs (along great circles), we obtain a spherical triangle ABC.
We consider right-angled spherical triangles with sides shorter than a semicircle, as shown in the figure.
Cudzysłów
Copernicus’ Third Theorem:

In a right-angled spherical triangle ABC on a sphere of radius R (where angle Cis a right angle), the following proportion between the sides holds:

AB / BC = R / BC

That is, the ratio of the hypotenuse to one leg equals the ratio of the radius to the adjacent leg. This means that if we know two sides, we can determine the third.

[Citation: Copernicus, Nicolaus (1473–1543), De revolutionibus orbium coelestium, Kujawsko-Pomorska Digital Library, UMK, 1854, Chapter XIII, pp. 63–64]

Cudzysłów
In other words, Copernicus proved a special case of the spherical law of cosines.
Now, we may assume that the sphere has radius R =1.

We measure in radians the length of the side (arc) opposite to a given angle as an arc on the sphere (from the sphere’s center). We have:

AB = c         BC = a         AC = b
(here a, b, c are the measures of angles AOB, BOC, AOC in radians)

If angle C is right, we can write Copernicus’ theorem as

cos c / cos b = cos a

[Citation: Copernicus, Nicolaus (1473–1543), De revolutionibus orbium coelestium, Kujawsko-Pomorska Digital Library, UMK, 1854, Chapter XIII, pp. 63–64]

Cudzysłów
Theorem of Pythagoras for spherical triangles

That is, if we know two sides, we can find the third.This is the spherical version of the Pythagorean theorem, which can be written as:

cos c = cos b   cos a

Cudzysłów
We also have the general spherical law of cosines for triangles on a sphere of radius R=1, where α, β, γ are the spherical angles of triangle ABC.

Copernicus’ Twelfth Theorem:
cos c = cos a   cos b + sin a   sin b   cos γ

That is, if we know two sides and at least one angle, we can determine the third, which is the spherical version of the law of cosines for all plane triangles.
 

[Citation: Copernicus, Nicolaus (1473–1543), De revolutionibus orbium coelestium, Kujawsko-Pomorska Digital Library, UMK, 1854, Chapter XIII, p. 73]

Akademia Kopernikanska
Up
Privacy Policy
Cookies Policy
Contests
Accessibility Declaration
Contact
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350
Contact for media
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • Segui
  • Segui
  • Segui
  • Segui
  • Segui
Ta strona korzysta z ciasteczek aby świadczyć usługi na najwyższym poziomie. Dalsze korzystanie ze strony oznacza, że zgadzasz się na ich użycie zgodnie z polityką prywatności .