Logo Akademii Kopernikańskiej
Menu
L’Accademia Copernicana amplia il partenariato – Università di Barcellona

L’Accademia Copernicana amplia il partenariato – Università di Barcellona

da admin | Lug 11, 2024 | Attualita

Il 9 luglio 2024, il prof. dr hab. Krzysztof M. Górski, Segretario Generale dell’Accademia Copernicana, ha firmato un MOU per la collaborazione nello sviluppo della scienza e nel trasferimento delle conoscenze con l’Università spagnola Abat Oliba CEU...
L’Università del Montenegro e l’Accademia Copernicana partner scientifici nei settori copernicani

L’Università del Montenegro e l’Accademia Copernicana partner scientifici nei settori copernicani

da admin | Lug 10, 2024 | Attualita

L’Accademia Copernicana ha stipulato un accordo di collaborazione con l’Università del Montenegro il 05.07.2024. L’accordo è stato firmato presso la sede dell’Accademia Copernicana a Varsavia, dove l’Accademia era rappresentata da Paweł...
Conferenza scientifica internazionale “Esiste una natura umana?” presso l’Istituto Tomistico dell’Università Pontificia San Tommaso d’Aquino – Angelicum a Roma

Conferenza scientifica internazionale “Esiste una natura umana?” presso l’Istituto Tomistico dell’Università Pontificia San Tommaso d’Aquino – Angelicum a Roma

da admin | Giu 18, 2024 | Attualita

Dal 14 al 16 giugno 2024, presso l’Istituto Tomistico dell’Università Pontificia San Tommaso d’Aquino – Angelicum a Roma, si è tenuta la conferenza scientifica internazionale “Esiste una natura umana?” co-organizzata e finanziata...
Incontro dei rappresentanti dell’Accademia Copernicana con Don Mauro Mantovani, S.D.B., Prefetto della Biblioteca Vaticana

Incontro dei rappresentanti dell’Accademia Copernicana con Don Mauro Mantovani, S.D.B., Prefetto della Biblioteca Vaticana

da admin | Giu 18, 2024 | Attualita

Il 14 giugno 2024, i rappresentanti dell’Accademia Copernicana si sono incontrati a Roma con Don Mauro Mantovani, S.D.B., Prefetto della Biblioteca Vaticana. L’Accademia era rappresentata dal Dr. Hab. Witold Mazurek, Prof. SGMK, Direttore...
Incontro dei rappresentanti dell’Accademia Copernicana con le autorità dell’Università Pontificia della Santa Croce a Roma

Incontro dei rappresentanti dell’Accademia Copernicana con le autorità dell’Università Pontificia della Santa Croce a Roma

da admin | Giu 13, 2024 | Attualita

Il 13 giugno 2024, all’Università Pontificia della Santa Croce a Roma, i rappresentanti dell’Accademia Copernicana si sono incontrati con le autorità dell’università. La prima istituzione era rappresentata dal Dr. Hab. Witold Mazurek, Prof. SGMK,...
« Post precedenti

Recent Posts

  • L’Accademia Copernicana amplia il partenariato – Università di Barcellona
  • L’Università del Montenegro e l’Accademia Copernicana partner scientifici nei settori copernicani
  • Conferenza scientifica internazionale “Esiste una natura umana?” presso l’Istituto Tomistico dell’Università Pontificia San Tommaso d’Aquino – Angelicum a Roma
  • Incontro dei rappresentanti dell’Accademia Copernicana con Don Mauro Mantovani, S.D.B., Prefetto della Biblioteca Vaticana
  • Incontro dei rappresentanti dell’Accademia Copernicana con le autorità dell’Università Pontificia della Santa Croce a Roma

Recent Comments

Nessun commento da mostrare.
Cudzysłów
Kopernikańskie twierdzenia cosinusów dla trójkątów sferycznych

Rozdział XIV

Twierdzenia III i XII

Cudzysłów
Rozważamy trzy punkty A, B, i C na sferze o promieniu R. Jeżeli połączymy je łukami (wzdłuż kół wielkich) to otrzymamy trójkąt sferyczny ABC.
Rozważamy trójkąty, które są prostokątne i mają boki krótsze niż półokrąg, jak na rysunku.
Cudzysłów
III Twierdzenie Kopernika:

W prostokątnym trójkącie sferycznym ABC na sferze o promieniu R (gdzie kąt C jest prosty) zachodzą następujące proporcje pomiędzy długościami boków:

AB / BC = R / BC

Czyli że stosunek przeciwprostokątnej do jednej z przyprostokątnych jest równy stosunkowi promienia do drugiej przyprostokątnej. Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów
Czyli Kopernik dowiódł szczególną wersję twierdzenia cosinusów dla trójkątów sferycznych.  Teraz możemy  założyć że promień sfery R =1.

Mierzymy w radianach długość boku (łuku) leżącego naprzeciwko danego kąta jako łuku na sferze (od środka sfery) i mamy:

AB = c         BC = a         AC = b
(tutaj a, b, c są miarami kątów AOB, BOC, AOC w radianach)

Jeżeli kąt C jest prosty, możemy zapisać twierdzenie Kopernika jako

cos c / cos b = cos a

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Cudzysłów
Twierdzenia Pitagorasa dla trójkątów sferycznych

Znaczy to, że jeżeli znamy dwa boki, to możemy znaleźć trzeci.  To jest sferyczna wersja twierdzenia Pitagorasa, które możemy zapisać jako:

cos c = cos b   cos a

Cudzysłów
Mamy też ogólniejsze twierdzenie cosinusów dla trójkątów sferycznych na sferze o promieniu R =1, gdzie kąty α, β, γ są kątami sferycznymi trójkąta ABC.

XII Twierdzenie Kopernika:
cos c = cos a   cos b + sin a   sin b   cos γ

Znaczy to, że jeżeli znamy dwa boki i przynajmniej jeden kąt, to możemy znaleźć trzeci, co jest sferyczną wersją twierdzenia cosinusów dla wszystkich trójkątów płaskich.

 

[Kopernik, Mikołaj (1473-1543), “Mikołaja Kopernika Toruńczyka O obrotach ciał niebieskich ksiąg sześć”,  Kujawsko-Pomorska Biblioteka cyfrowa, UMK, 1854, Rozdział XIII, str.63-64]

Akademia Kopernikanska
Do góry
Polityka prywatności
Polityka Cookies
Konkursy
Deklaracja Dostępności
Kontakt
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350
Kontakt dla mediów
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • Segui
  • Segui
  • Segui
  • Segui
  • Segui
Cudzysłów
Copernican Cosine Theorems for Spherical Triangles

Chapter XIV

Theorems III and XII

Cudzysłów
We consider three points A, B, and C on a sphere of radius R. If we connect them by arcs (along great circles), we obtain a spherical triangle ABC.
We consider right-angled spherical triangles with sides shorter than a semicircle, as shown in the figure.
Cudzysłów
Copernicus’ Third Theorem:

In a right-angled spherical triangle ABC on a sphere of radius R (where angle Cis a right angle), the following proportion between the sides holds:

AB / BC = R / BC

That is, the ratio of the hypotenuse to one leg equals the ratio of the radius to the adjacent leg. This means that if we know two sides, we can determine the third.

[Citation: Copernicus, Nicolaus (1473–1543), De revolutionibus orbium coelestium, Kujawsko-Pomorska Digital Library, UMK, 1854, Chapter XIII, pp. 63–64]

Cudzysłów
In other words, Copernicus proved a special case of the spherical law of cosines.
Now, we may assume that the sphere has radius R =1.

We measure in radians the length of the side (arc) opposite to a given angle as an arc on the sphere (from the sphere’s center). We have:

AB = c         BC = a         AC = b
(here a, b, c are the measures of angles AOB, BOC, AOC in radians)

If angle C is right, we can write Copernicus’ theorem as

cos c / cos b = cos a

[Citation: Copernicus, Nicolaus (1473–1543), De revolutionibus orbium coelestium, Kujawsko-Pomorska Digital Library, UMK, 1854, Chapter XIII, pp. 63–64]

Cudzysłów
Theorem of Pythagoras for spherical triangles

That is, if we know two sides, we can find the third.This is the spherical version of the Pythagorean theorem, which can be written as:

cos c = cos b   cos a

Cudzysłów
We also have the general spherical law of cosines for triangles on a sphere of radius R=1, where α, β, γ are the spherical angles of triangle ABC.

Copernicus’ Twelfth Theorem:
cos c = cos a   cos b + sin a   sin b   cos γ

That is, if we know two sides and at least one angle, we can determine the third, which is the spherical version of the law of cosines for all plane triangles.
 

[Citation: Copernicus, Nicolaus (1473–1543), De revolutionibus orbium coelestium, Kujawsko-Pomorska Digital Library, UMK, 1854, Chapter XIII, p. 73]

Akademia Kopernikanska
Up
Privacy Policy
Cookies Policy
Contests
Accessibility Declaration
Contact
biuro@akademiakopernikańska.gov.pl
office@nca.gov.pl
+48 782 950 350
Contact for media
media@akademiakopernikanska.pl
+48 782 950 050
Social Media
  • Segui
  • Segui
  • Segui
  • Segui
  • Segui
Ta strona korzysta z ciasteczek aby świadczyć usługi na najwyższym poziomie. Dalsze korzystanie ze strony oznacza, że zgadzasz się na ich użycie zgodnie z polityką prywatności .