The search for dark matter more lamp posts Peter Quinn University of Western Australia, AusSRC, ISC, UWADI, ICRAR

International Centre for Radio Astronomy Research

Where is it?

ULTRALIGHT DARK MATTER

Mass range ~ 10^{-22} eV to ~ 10^{-6} eV 10-15

10⁻³

10-12

10-9

10-6

Experiments CASPEr, MAGIS-100

AXIONS

Mass range $\sim 10^{-6}$ eV to $\sim 10^{-3}$ eV

Experiments ADMX, MADMAX, QUAX, CAPP-8TB

10³⁶ in particle mass

The search - MACHOs and WIMPs

Paczynski 1986 microlensing and DM *ApJ* **304**, 1-5

MACHO, OGLE and EROS collaborations

CDMS, XENON, PANDAX, DAMA/ LIBRA

New southern hemisphere WIMP experiment

Alcock et.al. 1996 arXiv:astro-ph/9604176 Alcock et.al. 2000 arXiv:astro-ph/0011506

Kimberly Palladino, Oxford, Patras Meeting 2022 indico.him.uni-mainz.de/event/109/program

Southern hemisphere "DAMA experiment" Elisabetta Barberio, University of Melbourne, \$35m ARC centre of excellence, Stawell Vic, 1km depth

The Axion: advantage and opportunity

Snowmass 2021 White Paper Axion Dark Matter, Jaeckel et.al., 2022, ArXiv 2203.14923

 Simultaneous solution of two fundamental problems: CP violation and the origin of dark matter

■ QCD "favoured" regions from 10⁻⁶ eV to 10⁻³ eV

• Weak axion photon coupling $g_{a\gamma\gamma}$ implies long lifetimes (> 10³³ years) but axion can be "stimulated" to decay via a magnetic field (Primakoff effect) Sikivie 1983, PhysRevLett.51.1415

Resonant (cavity, plasma) $F \sim B^2$ conversion of axions as well as non-resonant (vacuum) conversion $F \sim B^2(k_a)$

 Axion mass $\sim 10^{-6} eV \rightarrow \lambda_{Compton} \sim 1m$ human sized resonant cavities

Axion energy $\sim 10^{-6} eV - 10^{-3} eV$ 240 MHz - 240 GHz photons = Radio Astronomy opportunity

- Primakoff: $F \sim B^2 V$
- Resonant Conversion in neutron star magnetospheres ($\omega_p \sim \omega_a$)
 - Large B, small V
 - Individual pulsars, dwarf galaxies, galactic centre
 - Foster et.al. 2022 (2202.08274); Zhou et.al. (2209.09695); Quinn, Tremblay and Hobbs 2023, 700MHz - 4 GHz
- Non-resonant conversion ($k_B \sim k_a$)
 - Small B, large V
 - MW global B field, external galaxies and clusters of galaxies Kelley PhD UWA 2019
 - Kelley and Quinn 2017 (1708.10399) overly optimistic
 - Weak cosmic fields + unknown small scale spatial structure of B makes axion signal very weak/uncertain

 Parkes

Copernican Academy Meeting, Feb. 2023, Toruń 5

- Primakoff: $F \sim B^2 V$
- Resonant Conversion in neutron star magnetospheres ($\omega_p \sim \omega_a$)
 - Large B, small V
 - Individual pulsars, dwarf galaxies, galactic centre
 - Foster et.al. 2022 (2202.08274); Zhou et.al. (2209.09695); Quinn, Tremblay and Hobbs 2023, 700MHz - 4 GHz
- Non-resonant conversion ($k_B \sim k_a$)
 - Small B, large V
 - MW global B field, external galaxies and clusters of galaxies Kelley PhD UWA 2019
 - Kelley and Quinn 2017 (1708.10399) overly optimistic
 - Weak cosmic fields + unknown small scale spatial structure of B makes axion signal very weak/uncertain

Parkes

- Primakoff: $F \sim B^2 V$
- Resonant Conversion in neutron star magnetospheres ($\omega_p \sim \omega_a$)
 - Large B, small V
 - Individual pulsars, dwarf galaxies, galactic centre
 - Foster et.al. 2022 (2202.08274); Zhou et.al. (2209.09695); Quinn, Tremblay and Hobbs 2023, 700MHz - 4 GHz
- Non-resonant conversion ($k_B \sim k_a$)
 - Small B, large V
 - MW global B field, external galaxies and clusters of galaxies Kelley PhD UWA 2019
 - Kelley and Quinn 2017 (1708.10399) overly optimistic
 - Weak cosmic fields + unknown small scale spatial structure of B makes axion signal very weak/uncertain
- Upper limits from observations of neutron stars $g_{a\gamma\gamma} \leq 10^{-11}$
- Recent downgrade of expected NS fluxes (Battye et.al. 2021, 2107.01225)
- Are there any prospects for a useful observational astronomy constraint on QCD axions?

Early Universe possibilities

Resonant Primakoff conversion $a \rightarrow \gamma$ a----

•
$$\omega_{plasma} \sim \sqrt{n_e} \sim (1+z)^{3/2}$$

- Universe acts like a tuneable cavity
- $\omega_a = \omega_{plasma}$ at some $z = z_a > z_{recombination}$
- 10⁻⁶ eV 10⁻³ eV axions $z_a \sim 10^5 10^7$
- Photons are heavily Compton scattered (thermalized) and add ΔT to CMB
- $k\Delta T_a \sim E_a B^2 g_{a\gamma\gamma}^2 \delta t \neq f(z_a)$

Early Universe possibilities

Resonant Primakoff conversion $a \rightarrow \gamma$ a-----

•
$$\omega_{plasma} \sim \sqrt{n_e} \sim (1+z)^{3/2}$$

- Universe acts like a tuneable cavity
- $\omega_a = \omega_{plasma}$ at some $z = z_a > z_{recombination}$
- 10⁻⁶ eV 10⁻³ eV axions $z_a \sim 10^5 10^7$
- Photons are heavily Compton scattered (thermalized) and add ΔT to CMB
- $k\Delta T_a \sim E_a B^2 g_{a\gamma\gamma}^2 \delta t \neq f(z_a)$

Non-Primakoff conversion $a \rightarrow 2\gamma a \rightarrow -\sqrt{9}_{a\gamma\gamma}$

Axion 2 photon decay lifetime $\tau_a \sim E_a^{-3} g_{a\gamma\gamma}^{-2} > t_{Hubble}$

• # decays $m^{-3} \sim \frac{n_a}{\tau_a} \sim (1+z)^3$

• $\tau_a \rightarrow \frac{\tau_a}{\Sigma}$ (Caputo et.al. 2019, 1811.08436)

 $\Sigma_{CMB} = density \ of \ states = 2\left(e^{\frac{E_a}{6k(1+z)}} - 1\right)^{-1}$

• $\Delta E \rightarrow \Delta T_{CMB}$ $z > z_{recomb}$

• $\Delta E \rightarrow spectrum \quad z < z_{recomb}$

 Spectral contribution rises to lower frequencies unlike CMB in Rayleigh-Jeans domain

New experiments

- New generation EoR detectors in the 40-90 MHz band could provide interesting constraints on possible low frequency CMB distortions for the decay of axions in the 10⁻³ eV range $(\nu_0 < 10^8 Hz)$
- GINAN (Global Imprint from Nascent Atoms to Now) project 2023 (Ravi Subrahmanyan et.al.) 40 - 230 MHz

Shaped Antenna measurement of the background RAdio Spectrum SARAS 3 Raghunathan et.al. 2021 (2104.03522)

Copernican Academy Meeting, Feb. 2023, Toruń 7