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It’s like the Copernican Principle!



The Copernican Principle is a scientific rule


That says we're not at the center - it's a bit of a school


We used to think the Earth was the star of the show


But now we know we're just one planet in a cosmic flow


Our sun is just one of many in the Milky Way


And galaxies are scattered in an endless cosmic ballet


So though we might feel special on this tiny blue dot


The Copernican Principle says we're really not a lot!
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(in rhyming couplets)
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In cosmology: observed near-isotropy

+ Copernican Principle

⇒ near-homogeneity

So do we live in a special place?

Hard to test because observation are on the light cone

Hence radial inhomogeneity, centred on us, will be 
consistent with isotropy

In other words, it’s hard to separate radial from temporal 
variations 
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Space

Time

We can only see things the

light-travel time in the past

So we can only directly

probe this “light cone”

Which makes it hard to distinguish

temporal variations from spatial variations
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• This was the basis for the most extreme non-Copernican 
cosmological suggestion:

- Maybe the acceleration (ä>0) isn’t from the growing 
dominance of  homogeneous dark energy

- But because we’re living                                               
near the centre of a giant                                        
(~1Gpc) void

Giant Void hypothesis

We live here



3

Teff

f b

2.8 3 3.2 3.4 3.6
0.1

0.12
0.14
0.16
0.18

Teff

Ω
lo

c
m

 (z
=0

)

2.8 3 3.2 3.4 3.6

0.15
0.2

0.25
0.3

0.35

T0
EdS

H
0

2.8 3 3.2 3.4 3.6
40

50

60

T0
EdS

n s

2.8 3 3.2 3.4 3.6
0.85

0.9

0.95

FIG. 2: Likelihood contours at 68% and 95% confidence for
constrained (blue, solid contours) and unconstrained (red,
dashed contours) voids.

[25], CBI [26], and QUaD [27]. We also applied a conser-
vative prior that Ωloc

m > 0.1 at the void centre.

In Fig. 2 we show a selection of 2D likelihood sur-
faces for the constrained and unconstrained void mod-
els. The parameters are very different in each case.
For constrained voids, the effective temperature, TEdS

0 =
2.760±0.008 K, is similar to T0. This TEdS

0 is far too low
to provide a good fit to the observed CMB spectrum—
we find ∆χ2 = 162 between the constrained void and Λ
model for CMB+SN data, with almost all of this differ-
ence coming from the CMB. This poor fit also leads to
very low fb = 0.100± 0.001 and ns = 0.88± 0.01.

For the unconstrained voids, however, much higher ef-
fective temperatures are possible, due to the geometrical
effect of the overdense shell. These temperatures are suf-
ficiently high to fit the CMB well—the fit to CMB+SN is
actually slightly better than Λ, with ∆χ2 = −1.4. How-
ever, this requires an unusually low local Hubble rate of
H0 = 44±2 km s−1Mpc−1, as Fig. 2 shows. Recent local
estimates range between 57 and 79 km s−1Mpc−1 at 1σ
[28], and so this class of void model is ruled out at high
confidence.

In Fig. 3 we present the residuals of the void C!’s from
the best-fit Λ model. The best-fit void model is shown
by the black curve, along with 100 other spectra sampled
randomly from the MCMC chains. The grayscale level
indicates the relative likelihoods. It is clear that in the
constrained case one cannot fit the CMB data without
introducing fine-tuned features to the primordial spec-
trum, since the physics at recombination is wrong.

Baryon acoustic scale.—The physics before recombi-
nation imprints a fixed comoving scale into the matter
power spectrum in the form of the BAO scale, carrying
much useful information about the geometry and expan-
sion history assuming an FLRW background (see, e.g.,
[29]). It is therefore important to assess the usefulness of
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FIG. 3: Residual C!’s (in µK2) from the best-fit Λ model for
constrained (top) and unconstrained (bottom) voids. Binned
WMAP data are shown by the red (thick) error bars, and
ACBAR data by the blue (thin) bars.

BAO data in constraining void models for acceleration.
The first step is to evaluate the physical BAO scale,

lBAO
i (also called the sound horizon at the drag epoch),
at some time ti early enough that the void background is
well approximated by FLRW. To do this, we find an ef-
fective EdS model with the same physics at early times as
the specified void model using the same procedure used
to calculate the void C!’s, except that it is not necessary
here to match the effective and true LSS circumferences.
Then we calculate lBAO

i using the fitting function from
[30] applied to the effective EdS parameters. Next, lBAO

i

is propagated up to redshift z on the void observer’s past
light cone using the LTB metric. The background shear
causes the physical BAO scales in the transverse and ra-
dial directions to differ; they are given, respectively, by

lBAO
⊥ (z) =

lBAO
i Y (z)

Y (ti, r(z))
, lBAO

‖ (z) =
lBAO
i Y ′(z)

Y ′(ti, r(z))
. (4)

Here Y (z) ≡ Y (t(z), r(z)), and similarly for Y ′(z). BAO
observations are often expressed as a BAO length scale
today, but such values necessarily depend on the assumed
background. Instead, a model-independent expression of
the transverse and radial BAO (RBAO) scales is in terms
of the corresponding angular and redshift increments,

∆θBAO(z) =
lBAO
⊥ (z)

Y (z)
,

∆zBAO(z)

1 + z
= lBAO

‖ (z)
Ẏ ′(z)

Y ′(z)
. (5)

Reference [31] emphasized the importance of distinguish-
ing radial and angular scales in this context.
Importantly, ∆zBAO contains two factors that rein-

force each other in the peripheral void region. The quan-
tity Ẏ ′(z)/Y ′(z) is the expansion rate in the radial di-
rection, which is suppressed in the overdense periph-
ery. This, in turn, results in a suppressed RBAO scale,
lBAO
‖ (z), in the periphery. The net effect is a strong sup-

pression of∆zBAO in this region compared with the stan-

“Can we avoid dark energy?”

(Zibin, Moss & Scott, arXiV:0809.376)
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vative prior that Ωloc

m > 0.1 at the void centre.

In Fig. 2 we show a selection of 2D likelihood sur-
faces for the constrained and unconstrained void mod-
els. The parameters are very different in each case.
For constrained voids, the effective temperature, TEdS

0 =
2.760±0.008 K, is similar to T0. This TEdS

0 is far too low
to provide a good fit to the observed CMB spectrum—
we find ∆χ2 = 162 between the constrained void and Λ
model for CMB+SN data, with almost all of this differ-
ence coming from the CMB. This poor fit also leads to
very low fb = 0.100± 0.001 and ns = 0.88± 0.01.

For the unconstrained voids, however, much higher ef-
fective temperatures are possible, due to the geometrical
effect of the overdense shell. These temperatures are suf-
ficiently high to fit the CMB well—the fit to CMB+SN is
actually slightly better than Λ, with ∆χ2 = −1.4. How-
ever, this requires an unusually low local Hubble rate of
H0 = 44±2 km s−1Mpc−1, as Fig. 2 shows. Recent local
estimates range between 57 and 79 km s−1Mpc−1 at 1σ
[28], and so this class of void model is ruled out at high
confidence.

In Fig. 3 we present the residuals of the void C!’s from
the best-fit Λ model. The best-fit void model is shown
by the black curve, along with 100 other spectra sampled
randomly from the MCMC chains. The grayscale level
indicates the relative likelihoods. It is clear that in the
constrained case one cannot fit the CMB data without
introducing fine-tuned features to the primordial spec-
trum, since the physics at recombination is wrong.

Baryon acoustic scale.—The physics before recombi-
nation imprints a fixed comoving scale into the matter
power spectrum in the form of the BAO scale, carrying
much useful information about the geometry and expan-
sion history assuming an FLRW background (see, e.g.,
[29]). It is therefore important to assess the usefulness of
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constrained (top) and unconstrained (bottom) voids. Binned
WMAP data are shown by the red (thick) error bars, and
ACBAR data by the blue (thin) bars.

BAO data in constraining void models for acceleration.
The first step is to evaluate the physical BAO scale,

lBAO
i (also called the sound horizon at the drag epoch),
at some time ti early enough that the void background is
well approximated by FLRW. To do this, we find an ef-
fective EdS model with the same physics at early times as
the specified void model using the same procedure used
to calculate the void C!’s, except that it is not necessary
here to match the effective and true LSS circumferences.
Then we calculate lBAO

i using the fitting function from
[30] applied to the effective EdS parameters. Next, lBAO

i

is propagated up to redshift z on the void observer’s past
light cone using the LTB metric. The background shear
causes the physical BAO scales in the transverse and ra-
dial directions to differ; they are given, respectively, by

lBAO
⊥ (z) =

lBAO
i Y (z)

Y (ti, r(z))
, lBAO

‖ (z) =
lBAO
i Y ′(z)

Y ′(ti, r(z))
. (4)

Here Y (z) ≡ Y (t(z), r(z)), and similarly for Y ′(z). BAO
observations are often expressed as a BAO length scale
today, but such values necessarily depend on the assumed
background. Instead, a model-independent expression of
the transverse and radial BAO (RBAO) scales is in terms
of the corresponding angular and redshift increments,

∆θBAO(z) =
lBAO
⊥ (z)

Y (z)
,

∆zBAO(z)

1 + z
= lBAO

‖ (z)
Ẏ ′(z)

Y ′(z)
. (5)

Reference [31] emphasized the importance of distinguish-
ing radial and angular scales in this context.
Importantly, ∆zBAO contains two factors that rein-

force each other in the peripheral void region. The quan-
tity Ẏ ′(z)/Y ′(z) is the expansion rate in the radial di-
rection, which is suppressed in the overdense periph-
ery. This, in turn, results in a suppressed RBAO scale,
lBAO
‖ (z), in the periphery. The net effect is a strong sup-

pression of∆zBAO in this region compared with the stan-

“Can we avoid dark energy?”

(Zibin, Moss & Scott, arXiV:0809.376)

“Constrained” voids,

with ∫𝝆(r)r2dr≤0 
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vative prior that Ωloc

m > 0.1 at the void centre.

In Fig. 2 we show a selection of 2D likelihood sur-
faces for the constrained and unconstrained void mod-
els. The parameters are very different in each case.
For constrained voids, the effective temperature, TEdS

0 =
2.760±0.008 K, is similar to T0. This TEdS

0 is far too low
to provide a good fit to the observed CMB spectrum—
we find ∆χ2 = 162 between the constrained void and Λ
model for CMB+SN data, with almost all of this differ-
ence coming from the CMB. This poor fit also leads to
very low fb = 0.100± 0.001 and ns = 0.88± 0.01.

For the unconstrained voids, however, much higher ef-
fective temperatures are possible, due to the geometrical
effect of the overdense shell. These temperatures are suf-
ficiently high to fit the CMB well—the fit to CMB+SN is
actually slightly better than Λ, with ∆χ2 = −1.4. How-
ever, this requires an unusually low local Hubble rate of
H0 = 44±2 km s−1Mpc−1, as Fig. 2 shows. Recent local
estimates range between 57 and 79 km s−1Mpc−1 at 1σ
[28], and so this class of void model is ruled out at high
confidence.

In Fig. 3 we present the residuals of the void C!’s from
the best-fit Λ model. The best-fit void model is shown
by the black curve, along with 100 other spectra sampled
randomly from the MCMC chains. The grayscale level
indicates the relative likelihoods. It is clear that in the
constrained case one cannot fit the CMB data without
introducing fine-tuned features to the primordial spec-
trum, since the physics at recombination is wrong.

Baryon acoustic scale.—The physics before recombi-
nation imprints a fixed comoving scale into the matter
power spectrum in the form of the BAO scale, carrying
much useful information about the geometry and expan-
sion history assuming an FLRW background (see, e.g.,
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BAO data in constraining void models for acceleration.
The first step is to evaluate the physical BAO scale,

lBAO
i (also called the sound horizon at the drag epoch),
at some time ti early enough that the void background is
well approximated by FLRW. To do this, we find an ef-
fective EdS model with the same physics at early times as
the specified void model using the same procedure used
to calculate the void C!’s, except that it is not necessary
here to match the effective and true LSS circumferences.
Then we calculate lBAO

i using the fitting function from
[30] applied to the effective EdS parameters. Next, lBAO

i

is propagated up to redshift z on the void observer’s past
light cone using the LTB metric. The background shear
causes the physical BAO scales in the transverse and ra-
dial directions to differ; they are given, respectively, by

lBAO
⊥ (z) =

lBAO
i Y (z)

Y (ti, r(z))
, lBAO

‖ (z) =
lBAO
i Y ′(z)

Y ′(ti, r(z))
. (4)

Here Y (z) ≡ Y (t(z), r(z)), and similarly for Y ′(z). BAO
observations are often expressed as a BAO length scale
today, but such values necessarily depend on the assumed
background. Instead, a model-independent expression of
the transverse and radial BAO (RBAO) scales is in terms
of the corresponding angular and redshift increments,

∆θBAO(z) =
lBAO
⊥ (z)

Y (z)
,

∆zBAO(z)

1 + z
= lBAO

‖ (z)
Ẏ ′(z)

Y ′(z)
. (5)

Reference [31] emphasized the importance of distinguish-
ing radial and angular scales in this context.
Importantly, ∆zBAO contains two factors that rein-

force each other in the peripheral void region. The quan-
tity Ẏ ′(z)/Y ′(z) is the expansion rate in the radial di-
rection, which is suppressed in the overdense periph-
ery. This, in turn, results in a suppressed RBAO scale,
lBAO
‖ (z), in the periphery. The net effect is a strong sup-

pression of∆zBAO in this region compared with the stan-

“Can we avoid dark energy?”

(Zibin, Moss & Scott, arXiV:0809.376)

“Constrained” voids,

with ∫𝝆(r)r2dr≤0 

“Unconstrained” voids,

allowed to be in an anti-void!
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“Precision cosmology defeats

void models for acceleration”


(Moss, Zibin & Scott, arXiV:1007.3725)

• We’d have to live very close to the centre of an almost 
spherical void, unique with the observable Universe

• Best-fit models have very low local H0, as well as σ8


• Poor fits to BAO


• Initial power spectrum would need to be tuned to fit


• Better fits come from “overcompensated” voids!


• Plus a CMB spectral distortion constraint



“A Test of the Copernican Principle”


(Caldwell & Stebbins, arXiV:1711.3459)
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
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x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)
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The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW+

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ ·∇xΦ[xscatter]/cH0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1− 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ · n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1− R2

R2
V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 1: Illustrated is a cross-section through a model universe
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rection may Thomson scatter off reionized gas toward the ob-
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tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.
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ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
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in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′e0
√
1 + zΘ[zrei−z] τ ′e0 = 3He0Ωb0σTc

8πGmH

(

1− 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h2 = 0.022 (h ≡ He0/100km/s/Mpc),
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in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy∆T/T depends on the direc-
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number, the u-distortion at Earth, which can be trans-
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that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
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How large could deviations from homogeneity be?


How can we probe unusual structures in the Universe 
more generally?
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• Similarly we could disscuss:

- scale at which we approach homogeneity

- largest known structures in observable Universe

- CMB anomalies, such as the “Cold Spot”

- constraints on the dipole

• But although we may not live in a special place, I am 
currently occupying a special time!

What else?


