Backlighting large-scale structure with the CMB

Anthony Challinor KICC, IoA & DAMTP University of Cambridge

- Peak efficiency around z = 2
- 2.5 arcmin deflections coherent over several degrees

CMB lensing by LSS

, ni

CMB lensing: robust probe of mostly linear structure

CMB remapped by $d = \nabla \phi$:

$$\phi(\hat{\boldsymbol{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} \left(\Phi + \Psi\right) \left(\chi \hat{\boldsymbol{n}}; \eta_0\right)$$

- Redshift of source plane known
- Statistics of fluctuations in source plane well understood
- High-z lenses and relatively large scales

 10^{4}

CMB lensing: robust probe of mostly linear structure

$$\phi(\hat{\boldsymbol{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} \left(\Phi + \Psi\right) \left(\chi \hat{\boldsymbol{n}}; \eta_0\right)$$

- Redshift of source plane known
- Statistics of fluctuations in source plane well understood
- High-z lenses and relatively large scales
 - Modest non-linear corrections

CMB lensing: robust probe of mostly linear structure

$$\phi(\hat{\boldsymbol{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} \left(\Phi + \Psi\right) \left(\chi \hat{\boldsymbol{n}}; \eta_0\right)$$

- Redshift of source plane known
- Statistics of fluctuations in source plane well understood
- High-z lenses and relatively large scales
 - Modest non-linear corrections
 - Baryons negligible until CMB-S4 era

CMB lensing reconstruction

• Fixed lenses ϕ introduce anisotropic correlations in lensed CMB, e.g., for T:

$$\langle T(\boldsymbol{\ell})T(\boldsymbol{L}-\boldsymbol{\ell})\rangle_{\text{CMB}} = \underbrace{\boldsymbol{L}\cdot\left[\boldsymbol{\ell}C_{\boldsymbol{\ell}}^{TT} + (\boldsymbol{L}-\boldsymbol{\ell})C_{|\boldsymbol{L}-\boldsymbol{\ell}|}^{TT}\right]}_{W^{TT}(\boldsymbol{\ell},\boldsymbol{L})}\phi(\boldsymbol{L})$$

• Statistical (noisy) reconstruction of ϕ from quadratic combinations of CMB fields, e.g.,

$$\hat{\phi}(\mathbf{L}) = \frac{1}{\mathcal{R}_{L}^{TT}} \int \frac{d^{2}\ell}{(2\pi)^{2}} W^{TT}(\ell, \mathbf{L}) \bar{T}(\ell) \bar{T}(\mathbf{L}-\ell)$$
Normalisation Known response to lensing Inverse-variance-filtered CMB field
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

lds

Reconstructed CMB lensing maps

Planck 2018

CMB lensing power reconstruction

Testing LCDM structure growth

 \bullet

Calibrate LCDM parameters on primary CMB fluctuations at $z \approx 1100$

Do late-time observations of large-scale structure match LCDM predictions, calibrated on high-z CMB?

Predict statistics (e.g., power spectrum) of clustering at low z and compare with observations

LCDM parameter dependencies

• In Limber approximation

$$L^4 C_L^{\phi\phi} = 4 \int_0^{\chi_*} d\chi \left(k \times \underbrace{k^3 P_\Psi}_{\Psi}\right)$$

• For L > 100

$$C_L^{\phi\phi} \sim (A_{
m s}\ell_{
m eq}) f(L/\ell_{
m eq}) \qquad (\ell_{
m eq} \equiv k)$$

(Mean-squared deflection) x (no. of $k_{
m eq}^{-1}$ scale lenses in χ_*)

• With sufficient range of L can decouple $A_{\rm S}$ and $\ell_{\rm eq}$ Pan+ 2014; Planck 2016

LCDM parameter dependencies

LCDM parameter dependencies

CMB-lensing-only LCDM constraints

Model-independent marginalisation based on observed spectra $\frac{C^{TT}C^{TT}}{C_{\rm fid}^{TT}C_{\rm fid}^{TT}}$ $C_L^{\phi\phi}$ 90 80 Priors for lens-only: 70 H $n_{\rm s} = 0.96 \pm 0.02$ 0.4 < h < 1.060 $\Omega_{\rm b}h^2 = 0.0222 \pm 0.0005$ (BBN)50

> Excellent agreement with LCDM expectation calibrated by primary CMB!

CMB-lensing-only LCDM constraints

Recent structure measurements from lensing

Similarly low S_8 including galaxy clustering

Chang+ 2023

CMB lensing maps from ACT DR6

Qu+ 2023 (in internal review)

ACT DR6 lensing power spectrum errors

Real ACT DR6 error bars but centred on theory

Qu+ 2023 (in internal review)

ACT DR6 lensing power spectrum errors

 Comparable constraining power to Planck and weakly correlated - State-of-the-art S_8 and $\sum m_{\nu}$ constraints from combination (+BAO)

Multipole L

Qu+ 2023 (in internal review)

Thank you!

Simons Observatory

- 3 US SATs + 2 UK SATs + 1 JPN SAT for B-mode science
- 40 % of sky with arcmin-resolution LAT survey overlapping DES, DESI, Rubin and LSST
- Six frequencies: 27–280 GHz
- First data in 2023!

JK (£18M UKRI infrastructure fund + ST

• Ix UHF optics tube for LAT

• UK data centre serving science-ready data products

• @CAM: LAT simulations and product readiness for lensing science

CMB science: from the early universe to galaxy evolution

Planck temperature

Forthcoming ACT DR6 temperature

Forthcoming ACT DR6 maps

40% of sky at 90, 150 and 220 GHz 10x data volume of DR4 Polarisation (2–3)x sensitivity of Planck

Recent structure measurements ADD PLANK kk POINT

Chen+ 2022