

Cosmoglobe

connecting the near and far universe through global analysis

Ingunn Kathrine Wehus

Nicolaus Copernicus World Congress, 19-21 February 2023

Cosmoglobe

-mapping the universe from the Solar system to the Big Bang

Early universe

Large-scale structure

Solar system

Classic linear CMB analysis pipeline

Classic linear CMB analysis pipelines

Challenges

- parameter degeneracies
- single-experiment blind spots
- information loss
- resource demanding

Classic linear CMB analysis pipelines

Challenges

5

- parameter degeneracies
- single-experiment blind spots
- information loss
- resource demanding

Classic linear CMB analysis pipelines

Challenges

6

- parameter degeneracies
- single-experiment blind spots
- information loss
- resource demanding

Cosmoglobe

- -mapping the universe from the Solar system to the Big Bang
- Main idea: To integrate the world's best data from radio to sub-mm wavelengths into a single model through global analysis
- Global analysis: Joint end-to-end pipeline
 - joint estimation of instrumental, astrophysical and cosmological parameters
 - implemented in the Commander code, developed by Planck and BeyondPlanck
- Global analysis: Joint multi-experiment analysis
 - complementary experiments break each other's degeneracies
 - data can be integrated both in the form of (preferably) time-ordered data and (secondarily) sky maps
- Global analysis: Joint effort from global community
 - open Science philosophy with strong focus on collaboration
 - the Cosmoglobe idea/project/community is input driven and evolving
 - driven by young scientists

Cosmoglobe global community cosmoglobe.uio.no

Yearly intensive course and workshops

Please join us :-)

Cosmoglobe algorithm in one slide

1. Write down an explicit parametric model for the observed data:

$$d_{j,t} = g_{j,t} \mathsf{P}_{tp,j} \left[\mathsf{B}_{pp',j}^{\text{symm}} \sum_{c} \mathsf{M}_{cj} (\beta_{p'}, \Delta_{\text{bp}}^{j}) a_{p'}^{c} + \mathsf{B}_{j,t}^{\text{asymm}} \left(\boldsymbol{s}_{j}^{\text{orb}} + \boldsymbol{s}_{t}^{\text{fsl}} \right) \right] + n_{j,t}^{\text{corr}} + n_{j,t}^{\text{w}}.$$

Let ω = {all free parameters}

2. Derive the joint posterior distribution with Bayes' theorem:

$$P(\omega \mid \boldsymbol{d}) = \frac{P(\boldsymbol{d} \mid \omega)P(\omega)}{P(\boldsymbol{d})} \propto \mathcal{L}(\omega)P(\omega),$$

3. Map out $P(\omega \mid d)$ with standard Markov Chain Monte Carlo (MCMC) methods, in particular Gibbs sampling

Global analysis proof of concept: BeyondPlanck - reanalysis of Planck LFI data

Joint analysis of Planck LFI (tod) + 353/857 + WMAP Ka-V + Haslam (maps)

Global analysis impact on cosmological parameters BeyondPlanck

End-to-end global analysis generally yields:

- larger and more accurate uncertainties
- lower systematic uncertainties

BeyondPlanck - map results

30 GHz Planck legacy map

European Commission

BeyondPlanck - map results

30 GHz BeyondPlanck map

European Commission

BeyondPlanck - map results

Planck 30 GHz difference map (BeyondPlanck - Planck legacy)

WMAP 9-year - Planck legacy

WMAP 9-year - BeyondPlanck

Q-band (41 GHz) 9-year WMAP

European

Q-band (41 GHz) Cosmoglobe WMAP

European

WMAP Q-band difference map (Cosmoglobe - 9-year)

WMAP Q-band internal detector (Q1-Q2)/2 difference map: 9-year

WMAP Q-band internal detector (Q1-Q2)/2 difference map: Cosmoglobe

WMAP 9-year - Planck legacy

WMAP 9-year - BeyondPlanck

Cosmoglobe WMAP - Cosmoglobe LFI

WMAP 23 GHz - Planck 30 GHz: Difference map spectra

Watts et al. (2023), in preparation

W-band (94 GHz) 9-year WMAP detector maps

W-band (94 GHz) Cosmoglobe WMAP detector maps

SPIDER – first demonstration of partial sky analysis

Joint Planck + WMAP + Haslam analysis (without SPIDER)

SPIDER – first demonstration of partial sky analysis

Joint Planck + WMAP + Haslam + SPIDER analysis

30

SPIDER – noise uncertainty per pixel

Joint Planck + WMAP + Haslam analysis (without SPIDER)

31

Thommesen et al. (2023), in preparation

SPIDER – noise uncertainty per pixel

Joint Planck + WMAP + Haslam + SPIDER analysis

Thommesen et al. (2023), in preparation

DIRBE 100µm map

European

DIRBE 100 μm map zodicorrected

DIRBE 100µm map zodiacal light correction

Dynamical zodiacal light modeling based on weekly DIRBE maps

LiteBIRD simulated TOD analysis

Aurlien et al. (2023), in preparation

On-going (but early days) efforts

PASIPHAE Optical 3D starlight polarization

COMAP High-res 26-34 GHz spectrometer

CHIPASS 1.4 GHz survey

QUIJOTE 11-19 GHz polarization

5 GHz all-sky T+P

Planck HFI

Planck HFI 100 - 857 GHz

Test unit being prepared for vibration test. Horn, calibrator, and mirror mechanism are not shown. **COBE-FIRAS** Absolute calibration

Global analysis summary

- Joint end-to-end analysis needed to constrain correlated parameters
- Joint analysis of independent experiments break each other degeneracies
- Joint analysis give more complete noise characterization
- Single pipeline is fast and effective and require less human interaction

Global modeling makes life simpler

Heliocentric universe

Mikołaj Kopernik

This project has received funding from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme

- Cosmoglobe
 - EU ERC-CoG Grant agreement No. 819478 PI I. K. Wehus 2019-2024
- bits2cosmology
 - EU ERC-CoG Grant agreement No. 772253 PI H. K. Eriksen 2018-2023
- BeyondPlanck
 - EU COMPET-4 Grant agreement No. 776282 PI H. K. Eriksen 2018-2020
- Global Component Separation Network
 - Diku/RCN INTPART Grant agreement No. 274990 PI I. K. Wehus 2018-2023

